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Abstract. We propose an integrable openXXZ chain coupled to the boundary impurities with
arbitrary exchange constants. The Bethe ansatz equation and eigenvalues are obtained by using
the quantum inverse scattering method. The ground-state properties are discussed by solving
the Bethe equation in some special cases. In addition, we present an approach for constructing
the reflecting matrixK which produces the boundary term coupled to impurities.

1. Introduction

Since the Heisenberg model was exactly solved by Bethe [1] in 1931, there has been
considerable progress in the investigation of quantum integrable systems. In the last decade,
quantum integrable models have again attracted much attention because of the growing
interest in strongly correlated systems. The Heisenberg chain is one of the most important
integrable models which has been studied extensively. In the early decades, most of the
work concentrated on the case with periodic or twisted boundary conditions because they
are usually compatible with the Yang–Baxter equation [2].

In addition, the quantum impurity problem, which has been extensively investigated with
renormalizing group techniques [3] and conformal field theory [4], is also very interesting
in itself. Andrei and Johannesson [5] first considered an impurity spinS embedded in an
integrable spin-12XXX chain with periodic boundary conditions. Subsequently, Schlottmann
et al [6] generalized it to the arbitrary spin chain. The standard approach to dealing
with the impurity integrable problem is the quantum inverse scattering method [7]. In
general, the Hamiltonian of an integrable spin chain can be represented as the logarithmic
derivative of a homogeneous transfer matrix, which is constructed from the direct products
of some local vertex matrices, at a special point of the spectrum parameter. Similarly, the
Hamiltonian of the impurity integrable spin chain can be constructed from the corresponding
inhomogeneous transfer matrix. Different from the homogeneous one, the inhomogeneous
transfer matrix includes some inhomogeneous local vertex matrices. The key point is to
find some inhomogeneous vertex matrices, which satisfy the same Yang–Baxter relation of
the homogeneous matrices, corresponding to impurity spins.

The pioneering work on the open boundary spin chain was carried out by Gaudin [8]
using the Bethe ansatz method. Lately, this work has been generalized to the Schrödinger
model by Woynarovich [9], the Hubbard model by Schulz [10] and the spin chain by Alcaraz
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et al [11]. Recently, investigations of the boundary bound states (see, e.g., [12–17]) have
also attracted much attention.

A general approach to constructing open integrable quantum spin chains with
independent boundary conditions on each end was proposed by Sklyanin [18] on the basis
of the previous work of Cherednik [19]. This problem was then extensively studied and
developed by many authors [20, 21]. Central to their approach is the introduction of aK

matrix which fulfils the reflecting equation. Physically, theK matrix can be interpreted
as the amplitude of a particle scattering at the boundaries or as boundaryS matrices in a
two-dimensional integrable quantum field. It is well known that not all the boundaryK

matrices comply with the integrability and only the solution of the reflecting equation is
compatible with a givenR matrix. In general, a family of conserved quantities can always
be constructed corresponding to those givenK andR matrices; therefore, the Hamiltonian
of the open integrable chain is derived.

We note that Sklyannin and many other authors used a constant numberK matrix to
construct their model, where theK matrix induces the boundary fields. Recently, Wang
and coworkers first introduced the operatorK matrix to study the Kondo problem in one-
dimensional strongly correlated electron systems [22]. In a previous paper [23], the problem
of an open spin-12 Heisenberg chain coupled to two spinS impurities sited at the ends has
been studied. In this paper, we continue to study theXXZ chain coupled to impurity spins
with different coupling constants on the boundary. The Hamiltonian we will consider reads

H =
N−1∑
n=1

J (σ 1
n σ

1
n+1+ σ 2

n σ
2
n+1+ coshησ 3

n σ
3
n+1)+ Ji [coshc(σ 1

1σ
1
L + σ 2

1σ
2
L )+ coshησ 3

1σ
3
L ]

+Ji [coshc(σ 1
Nσ

1
R + σ 2

Nσ
2
R)+ coshησ 3

Nσ
3
R] (1)

whereσ in (i = 1, 2, 3) are the Pauli matrices in thenth quantum vector space, andJ , Ji , η
andc are constants with the relation

Ji = J sinh2 η

(sinh2 η − sinh2 c)
. (2)

Hereη parametrizes the bulk anisotropy and an additional free parameterc is inducted to
indicate the boundaryXXZ-like exchange coupling.J and Ji are the coupling constants
which describe the coupling in bulk or between the bulk and the impurities, respectively.
From the relation ofJ andJi , it can be seen thatJi may have the same or opposite sign
to J depending on the values ofc and η. This means that the boundary coupling can
possess the same type coupling (antiferromagnetic or ferromagnetic) or the opposite type
comparing with bulk coupling. Based on the quantum inverse scattering method, the Bethe
ansatz equation and the eigenvalue of the Hamiltonian will be obtained.

2. The model

It is well known that an integrable problem is often related to the following Yang–Baxter
equation:

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ). (3)

As usual,R12, R13 andR23 are matrices acting inV n ⊗ V n ⊗ V n, for example,R12(λ) =
R12(λ)⊗ I3, R23(µ) = I1⊗R23(µ). It can be shown that theR-matrix of theXXZ model
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given by

R(λ) = 1

sinhη


sinh(λ+ η)

sinhλ sinhη
sinhη sinhλ

sinh(λ+ η)

 (4)

possessesP andT invariance

P12R12(λ)P12 ≡ R21(λ) = R12(λ) R
t1
12 = Rt212 (5)

whereP12 is the permutation matrix andti denotes the transposition in theith space. It also
has the properties of unitarity and crossing unitarity

R12(λ)R12(−λ) = ρ(λ) R
t1
12(λ)R

t1
12(−λ− 2η) = ρ̃(λ) (6)

where

ρ(λ) = 1

sinh2 η
sinh(λ+ η) sinh(η − λ) and ρ̃(λ) = ρ(λ+ η)

are scalar functions ofλ. Let us define the monodromy matrix

T (λ) = LN(λ)LN−1(λ) . . . Ln(λ) . . . L1(λ)

with Ln(λ) = Ran(λ), where the subindexa indicates the auxiliary space andn = 1, . . . , N
labels a quantum vector space at site numbern; thus we have

Ta(λ) = RaN(λ)Ra,N−1(λ) . . . Ra1(λ). (7)

It can be inferred from the Yang–Baxter equation (3) that the monodromy matrix fulfils the
relation

R12(λ− µ)T1(λ)T2(µ) = T2(µ)T1(λ)R12(λ− µ). (8)

In order to construct an integrable open chain with boundary impurities, it is necessary
to introduce the reflection matricesK−(µ) andK+(µ). The reflection matrix fulfils the
following reflecting equations [18]

R12(λ− µ)
1
K− (λ)R12(λ+ µ)

2
K− (µ) =

2
K− (µ)R12(λ+ µ)

1
K− (λ)R12(λ− µ)

R12(−λ+ µ)
1
K

t1

+ (λ)R12(−λ− µ− 2η)
2
K

t2

+ (µ)

= 2
K

t2

+ (µ)R12(−λ− µ− 2η)
1
K

t1

+ (λ)R12(−λ+ µ) (9)

with
1,2
K± andR12 acting on the spaceV1,2 and V1 ⊗ V2, respectively. It is obvious that

K−(λ) = I andK+(λ) = I , whereI means the identity matrix, are the simplest reflection
matrices which satisfy the reflecting equations. Following Sklyanin [18], the transfer matrix
t (λ) given by

t (λ) = TrK+(λ)T (λ)K−(λ)T −1(−λ) (10)

forms a one-parameter commutative family

[t (λ), t (µ)] = 0

where the monodromy matrixT (λ) is given by (7). By virtue of the unitary property of
theR-matrix for theXXZ model,R12(λ) has the same algebraic structure withR−1

12 (−λ).
ConstructT̂ (λ) which has the same algebra structure withT −1(−λ) by defining

T̂ (λ) = Ra1(λ)Ra2(λ) . . . RaN(λ). (11)
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Thus the transfer matrixt (λ) can also be constructed by

t (λ) = TrK+(λ)T (λ)K−(λ)T̂ (λ). (12)

It can be proved that ifτ obeys the Yang relation

R12(λ− µ)τ1(λ)τ2(µ) = τ2(µ)τ1(λ)R12(λ− µ)
then

K−(λ) = τ(λ)τ−1(−λ) (13)

also obeys the reflecting equation. In order to prove this, we will use the following relations.
From the Yang relation, one concludes that

τ−1
2 (−µ)R12(λ+ µ)τ1(λ) = τ1(λ)R12(λ+ µ)τ−1

2 (−µ) (14)

or

τ−1
1 (−λ)R12(λ+ µ)τ2(µ) = τ2(µ)R12(λ+ µ)τ−1

1 (−λ). (15)

SubstitutingK−(λ) into the reflecting equation, one gets

R12(λ− µ)
1
K− (λ)R12(λ+ µ)

2
K− (µ)

= R12(λ− µ)τ1(λ)τ
−1
1 (−λ)R12(λ+ µ)τ2(µ)τ

−1
2 (−µ)

= R12(λ− µ)τ1(λ)τ2(µ)R12(λ+ µ)τ−1
1 (−λ)τ−1

2 (−µ)
= τ2(µ)τ1(λ)R12(λ− µ)R12(λ+ µ)τ−1

1 (−λ)τ−1
2 (−µ)

= τ2(µ)τ1(λ)R12(λ+ µ)R12(λ− µ)τ−1
1 (−λ)τ−1

2 (−µ)
= τ2(µ)τ

−1
2 (−µ)R12(λ+ µ)τ1(λ)τ2(−µ)R12(λ− µ)τ−1

1 (−λ)τ−1
2 (−µ)

= τ2(µ)τ
−1
2 (−µ)R12(λ+ µ)τ1(λ)τ

−1
1 (−λ)R12(λ− µ)τ2(−µ)τ−1

2 (−µ)
= 2
K− (µ)R12(λ+ µ)

1
K− (λ)R12(λ− µ).

From (14) and (15), we find that the relations

τ−1
2 (−µ+ c)R12(λ+ µ)τ1(λ+ c) = τ1(λ+ c)R12(λ+ µ)τ−1

2 (−µ+ c) (16)

τ−1
1 (−λ+ c)R12(λ+ µ)τ2(µ+ c) = τ2(µ+ c)R12(λ+ µ)τ−1

1 (−λ+ c) (17)

are also satisfied, wherec is a constant. By using previous relations (16) and (17), with the
same procedure as the above we can prove that the matrix

K−(λ) = τ(λ+ c)τ−1(−λ+ c)
also satisfies the reflecting equation. Thus we can construct the reflection matrix as

K−(λ) = LL(λ+ cL)L
−1
L (−λ+ cL) = RaL(λ+ cL)R

−1
aL (−λ+ cL). (18)

Because theR-matrix of theXXZ model hasP symmetry and the property of unitarity,
R12(λ − cL)R12(−λ + cL) = ρ(λ − cL). It is convenient to multiplyK−(λ) by a constant
ρ(λ− cL), so thus we obtain

K−(λ) = RaL(λ+ cL)RaL(λ− cL) (19)

wherecL is a constant decided by the left boundary. In the following we will work with
this left reflection matrix.

In order to obtain our integrable Hamiltonian in the open boundary, we define the
monodromy matrix as

Ua(λ) = K+(λ)T ′a(λ)K−(λ)T̂ ′a(λ). (20)
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Here we takeK+(λ) = I andK−(λ) given in (18), and defineT ′(λ) and T̂ ′(λ) as

T ′a(λ) = RaR(λ+ cR)RaN(λ) . . . Ra2(λ)Ra1(λ) (21)

T̂ ′a(λ) = Ra1(λ)Ra2(λ) . . . RaN(λ)RaR(λ− cR) (22)

wherecR is a constant decided by the right boundary. With the same method discussed
above, one can prove thatU(λ) satisfies the reflecting equation:

R12(λ− µ)U1(λ)R12(λ+ µ)U2(µ) = U2(µ)R12(λ+ µ)U1(λ)R12(λ− µ). (23)

The HamiltonianH can be constructed from the transfer matrixX(λ), which is given
by

X(λ) = Tr aUa(λ) = TrK+(λ)T ′a(λ)K−(λ)T̂
′
a(λ). (24)

We note that

K−(λ)|λ=0 = RaL(cL)RaL(−cL) =
(

1− sinh2 cL

sinh2 η

)
IaL

andRam(λ)|λ=0 = Pam, whereIaL is the identity matrix in the spaceVa ⊗ VL and Pam
represents the permutation operator in the spaceVa⊗Vm. DifferentiatingX(λ) with respect
to λ at λ = 0, one gets

X′(0) = x + xNR+
N−1∑
n=1

xn,n+1+ xL1 (25)

where the first term is

x = Tra

[
∂

∂λ
RaR(λ+ cR)|λ=0RaR(−cR)K−(0)+ RaR(cR)

∂

∂λ
RaR(λ− cR)|λ=0K−(0)

]
= 2

coshη

sinhη

(
1− sinh2 cL

sinh2 η

)
the second term is

xNR = 2 Tra

[
RaR(cR)

∂

∂λ
RaN(λ)|λ=0PaNRaR(−cR)K−(0)

]
= 2

sinhη

(
1− sinh2 cL

sinh2 η

)[
coshcR(σ

1
Nσ

1
R + σ 2

Nσ
2
R)

+ coshη(σ 3
Nσ

3
R + 1)− coshη

sinh2 cR

sinh2 η

]
the third term is

xn,n+1 = 2 Tra

[
RaR(cR)RaR(−cR)

∂

∂λ
Rn,n+1(λ)|λ=0Pn,n+1K−(0)

]
= 2

sinhη

∏
R,L

(
1− sinh2 cR,L

sinh2 η

)
[σ 1
n σ

1
n+1+ σ 2

n σ
2
n+1+ coshη(σ 3

n σ
3
n+1+ 1)]

and the last term is

xL1 =
[
∂

∂λ
R1L(λ+ cL)|λ=0R1L(−cL)+ R1L(cL)

∂

∂λ
R1L(λ− cL)|λ=0

]
TraRaR(cR)RaR(−cR)

= 2

sinhη

(
1− sinh2 cR

sinh2 η

)
[coshcL(σ

1
1σ

1
L + σ 2

1σ
2
L )+ coshη(σ 3

1σ
3
L + 1)].
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Thus the HamiltonianH can be obtained:

H = J

2
sinhη

sinh4 η∏
R,L(sinh2 η − sinh2 cR,L)

X
′
(0)− C

=
N−1∑
n=1

J (σ 1
n σ

1
n+1+ σ 2

n σ
2
n+1+ coshησ 3

n σ
3
n+1)

+JL[coshcL(σ
1
1σ

1
L + σ 2

1σ
2
L )+ coshησ 3

1σ
3
L]

+JR[coshcR(σ
1
Nσ

1
R + σ 2

Nσ
2
R)+ coshησ 3

Nσ
3
R] (26)

where

JL,R = J sinh2 η

(sinh2 η − sinh2 cL,R)

and the constantC is given by

C = (NJ + JL + JR) coshη.

AlthoughcL,R can take arbitrary values, for simplicity we only consider the casecL = cR = c
(JL = JR = Ji) which corresponds to the Hamiltonian (1). The general case can be studied
easily by following the same procedure.

3. The algebraic Bethe ansatz

In the following, we will use the algebraic Bethe ansatz developed by Sklyanin to solve the
spectrum ofX(λ). For simplicity of calculation, it is convenient to shiftλ to λ − (η/2).
We define

Ua(λ) =
(
A(λ) B(λ)

C(λ) D(λ)

)
.

From the reflecting equation (22), some useful commutation relations betweenA(λ), D(λ)

andB(λ) can be obtained:

A(λ)B(µ) = sinh(λ− µ− η) sinh(λ+ µ− η)
sinh(λ− µ) sinh(λ+ µ) B(µ)A(λ)

+ sinhη sinh(λ+ µ− η)
sinh(λ− µ) sinh(λ+ µ)B(λ)A(µ)−

sinhη

sinh(λ+ µ)B(λ)D(µ) (27)

D(λ)B(µ) = −2 sinh2 η coshη

sinh(λ− µ) sinh(λ+ µ)B(µ)A(λ)

+sinh(λ− µ+ η) sinh(λ+ µ+ η)
sinh(λ− µ) sinh(λ+ µ) B(µ)D(λ)

+ sinhη sinh(λ− µ+ 2η)

sinh(λ− µ) sinh(λ+ µ)B(λ)A(µ)−
sinhη sinh(λ+ µ+ η)

sinh(λ− µ) sinh(λ+ µ)B(λ)D(µ).
(28)

It is very convenient to use the notation

D̃(λ) = D(λ) sinh 2λ− A(λ) sinhη. (29)
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The commutation relations are then simplified to

A(λ)B(µ) = sinh(λ− µ− η) sinh(λ+ µ− η)
sinh(λ− µ) sinh(λ+ µ) B(µ)A(λ)

+ sinhη sinh(2µ− η)
sinh(λ− µ) sinh 2µ

B(λ)A(µ)− sinhη

sinh(λ+ µ) sinh 2µ
B(λ)D̃(µ) (30)

D̃(λ)B(µ) = sinh(λ− µ+ η) sinh(λ+ µ+ η)
sinh(λ− µ) sinh(λ+ µ) B(µ)D̃(λ)

− sinhη sinh(2λ+ η)
sinh(λ− µ) sinh 2µ

B(λ)D̃(µ)

+sinhη sinh(2λ+ η) sinh(2µ− η)
sinh 2µ sinh(λ+ µ) B(λ)A(µ). (31)

The trace ofUa(λ) can be expressed as

X(λ) = TraUa(λ) = sinh 2λ+ sinhη

sinh 2λ
A(λ)+ 1

sinh 2λ
D̃(λ). (32)

Define the pseudovacuum state|0〉 as the state which has allN bulk spins and two boundary
impurity spins up:

|0〉 = |↑↑ · · · ↑〉 =
∏
k

⊗|↑〉k

where|↑〉k =
(1

0

)
k
, k = L, 1, . . . , N,R. Obviously,

σ+j |0〉 = 0.

Writing theR-matrix as a 2× 2 matrix in the auxiliary space, it follows that

Lj(λ) = Raj (λ) =
(
ω0+ ω3σ

3
j σ−j

σ+j ω0− ω3σ
3
j

)
(33)

where

ω0 = 1

sinhη
sinhλ cosh

1

2
η and ω3 = 1

sinhη
coshλ sinh

1

2
η.

It should be noted that theR-matrix is different from (3) only with theλ shifted toλ−(η/2).
From the definition ofUa(λ), it is easy to see

C(λ)|0〉 = 0.

After some algebraic calculations, we also get

A(λ)|0〉 = a(λ)|0〉 D(λ)|0〉 = d(λ)|0〉.
a(λ) andd(λ) are given by

a(λ) = 1

sinh2(N+2) η
aL+aL−aR+aR−a

2N

= 1

sinh2(N+2) η
sinh2

(
λ+ c + 1

2
η

)
sinh2

(
λ− c + 1

2
η

)
sinh2N

(
λ+ 1

2
η

)
(34)
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d(λ) = 1

sinh2(N+2) η

[
aL+aL−a

2N + aL+aL−dR+dR−

N∑
k=1

a2(N−k)d2(k−1)

+dL+dL−dR+dR−d
2N

]
= 1

sinh2(N+2) η

[
aL+aL−

(
a2N + dR+dR−

a2N − d2N

a2− d2

)
+ dL+dL−dR+dR−d

2N

]
(35)

where

a = sinh

(
λ+ 1

2
η

)
d = sinh

(
λ− 1

2
η

)
aL+ = aR+ = sinh

(
λ+ c + 1

2
η

)
aL− = aR− = sinh

(
λ− c + 1

2
η

)
dL+ = dR+ = sinh

(
λ+ c − 1

2
η

)
dL− = dR− = sinh

(
λ− c − 1

2
η

)
.

By using (29) and substitutinga(λ) andd(λ) into d̃(λ), the relation

D̃(λ)|0〉 = d̃(λ)|0〉
is given with

d̃(λ) = d(λ) sinh 2λ− a(λ) sinhη = 1

sinh2N+2 η
(sinh 2λ− sinhη)dL+dL−dR+dR−d

2N

= sinh 2λ− sinhη

sinh2(N+2) η
sinh2

(
λ+ c − 1

2
η

)
× sinh2

(
λ− c − 1

2
η

)
sinh2N

(
λ− 1

2
η

)
. (36)

As was shown,X(λ) andB(λ) can be treated as the generating functional of an infinite
number of conserved quantities and the creation operator of their eigenstates, respectively.
Our main task is to calculate the eigenvalue ofX(λ) on their eigenstates. The eigenstate of
X(λ) with M spins down is constructed as

|�〉 =
M∏
j=1

B(λj )|0〉.

Acting with X(λ) on the state and using the communication relations (30) and (31), we
obtain

X(λ)|�〉 = 3(λ, λ1, . . . , λM)|�〉 +
M∑
j=1

3j(λ, λ1, . . . , λM)|λ1, . . . , λj−1, λ, λj+1, . . . , λM〉.

3(λ, λ1, . . . , λM) given by

3(λ, λ1, . . . , λM) = 1

sinh 2λ
d̃(λ)

M∏
j=1

sinh(λ− λj + η) sinh(λ+ λj + η)
sinh(λ− λj ) sinh(λ+ λj )

+
(

1+ sinhη

sinh 2λ

)
a(λ)

M∏
j=1

sinh(λ− λj − η) sinh(λ+ λj − η)
sinh(λ− λj ) sinh(λ+ λj ) (37)



The open XXZ chain with boundary impurities 4627

is the eigenvalue if all the ‘unwanted terms’3j(λ, λ1, . . . , λM) vanish, that is

3j(λ, λ1, . . . , λM) = 0

for j = 1, . . . ,M. This condition indicates that the spectral parametersλj are not
independent of each other and produces the so-called Bethe ansatz equation:

sinh(2λj − η)cosh(λj − (η/2))
cosh(λj + (η/2))

a(λj )

d̃(λj )
=

M∏
k=1(6=j)

sinh(λj − λk + η) sinh(λj + λk + η)
sinh(λj − λk − η) sinh(λj + λk − η) . (38)

Substituting (30) and (31) into it, one has

cosh2(λj − (η/2))
cosh2(λj + (η/2))

sinh2(λj + c + (η/2)) sinh2(λj − c + (η/2))
sinh2(λj + c − (η/2)) sinh2(λj − c − (η/2))

(
sinh(λj + (η/2))
sinh(λj − (η/2))

)2N

=
M∏

k=1(6=j)

sinh(λj − λk + η) sinh(λj + λk + η)
sinh(λj − λk − η) sinh(λj + λk − η) . (39)

From equations (25) and (37), the eigenvalue of Hamiltonian (1) acting on the state|�〉 is
obtained:

E(λ1, . . . , λM) = J

2
sinhη

sinh4 η

(sinh2 η − sinh2 c)2

∂

∂λ
3(λ, λ1, . . . , λM)|λ=η/2

−(NJ + 2Ji) coshη

= 2J sinhη
M∑
j=1

sinhη

cosh 2λj − coshη
+ [(N − 1)J + 2Ji ] coshη. (40)

4. The ground-state properties

The properties of theXXZ chain was first studied in detail by Yang and Yang [24]. In
recent years, the finite-size corrections for the energy of this model have been extensively
investigated by many authors [25–27]. In this section, we will discuss the ground-state
properties of our model (1) in some special parameter cases.

In the following, we mainly concentrate our discussion on the| coshη| < 1 andJ > 0
case. For convenience, putη = iγ (γ real) and1 = coshη = cosγ . Although the
parameterc can take real or imaginary values, we limit our discussion to the realc case.
From (2), it can be seen this means that the boundary impurity couplingJi has the same
sign with couplingJ . In this case, we will see later that there is no boundary string solution
in the ground state. We define

8

(
λj ,

γ

2

)
= 2 arctan

(
tanhλj cot

1

2
γ

)
. (41)

By using exp(2i arctanz) = (1+ iz)/(1− iz), we have

ei8(λj ,γ /2) = sinh((iγ /2)− λj )
sinh((iγ /2)+ λj ) . (42)

Putting

e2i0 = 1− eiγ

1eiγ − 1
(43)
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it follows that

ei8(λj ,0) = eipj +1
eipj1+ 1

= cosh(λj + (iγ /2))
cosh(λj − (iγ /2)) (44)

wherepj = 8(λj , γ /2) and1 = coshη = cosγ = (e2i0 − eiγ )/(e2i0 eiγ − 1).
Now taking the logarithm of (39) we obtain

2N8(λj , γ /2) = 2πIj − 2[8(λj , 0)+8(λj + c, γ /2)+8(λj − c, γ /2)]

+
M∑

k=1(6=j)
8(λj ± λk, γ ). (45)

This equation can be written as

Ij

N
= 1

π

{
8

(
λj ,

γ

2

)
+ 1

N
[8i(λj )+8b(λj )] − 1

2N

M∑
k=−M

8(λj − λk, γ )
}

(46)

where

8i(λj ) = 8(λj + c, γ /2)+8(λj − c, γ /2)
and 8b(λj ) = 8(λj , 0)+ 1

28(2λj , γ )+ 1
28(λj , γ )

andIj are some integers. Here we representλ−j = −λj and note8(0, γ ) = 0. We define

ZN(λ) = 1

π

{
8

(
λ,
γ

2

)
+ 1

N
[8i(λ)+8b(λ)] − 1

2N

M∑
k=−M

8(λ− λk, γ )
}
. (47)

From this definition, the Bethe equation(46) is recovered byZN(λj ) = Ij /N . For the
ground state,Ij take consecutive integers symmetrically around zero. WhenN goes to
infinity λj tends to a continuous distribution, thus a density of roots{λj } can be defined as

ρN(λ) = dZN(λ)

dλ
. (48)

Taking the thermodynamic limit and differentiating (47) with respect toλ one gets

ρN(λ) = 1

π

{
8′
(
λ,
γ

2

)
+ 1

N
[8′i(λ)+8′b(λ)]

}
− 1

2π

∫ 3

−3
dµρN(µ)8

′(λ− µ, γ ) (49)

where3 is the cut-off of theλ modes and is determined by the condition
∫ 3
−3 ρN(λ) dλ =

(2M + 1)/N. As discussed in many previous papers [27, 28], the eigenenergy is minimized
at3 = ∞ up to the order of O(N−2).

We representρN(λ) as

ρN(λ) = ρ0(λ)+ 1

N
[ρi(λ)+ ρb(λ)] (50)

with ρ0(λ), ρi(λ) andρb(λ) given by

ρ0(λ) = 1

π
8′
(
λ,
γ

2

)
− 1

2π

∫ 3

−3
dµρ0(µ)8

′(λ− µ, γ ) (51)

ρi(λ) = 1

π
8′i (λ)−

1

2π

∫ 3

−3
dµρi(µ)8

′(λ− µ, γ ) (52)

ρb(λ) = 1

π
8′b(λ)−

1

2π

∫ 3

−3
dµρb(µ)8

′(λ− µ, γ ) (53)
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whereρ0(λ), (1/N)ρi(λ) and (1/N)ρb(λ) are the contributions of the bulk, the impurity
and the open boundary to the density, respectively. Substituting

8′
(
λ,
γ

2

)
= 2 sinγ

cosh 2λ− cosγ
and 8′(λ− µ, γ ) = 2 sin 2γ

cosh 2(λ− µ)− cos 2γ

into (51), in the case of3 = ∞ the equation is exactly solved by a Fourier transform to
give

ρ0(λ) = 1

γ cosh(πλ/γ )
. (54)

Note that

8′i(λ) =
2 sinγ

cosh 2(λ+ c)− cosγ
+ 2 sinγ

cosh 2(λ− c)− cosγ

8′b(λ) =
2 sin 20

cosh 2λ− cos 20
+ 2 sin 2γ

cosh 4λ− cos 2γ
+ sin 2γ

cosh 2λ− cos 2γ
.

Then from (52) and (53), we obtainρi(λ) andρb(λ):

ρi(λ) = 1

γ cosh[π(λ− c)/γ ]
+ 1

γ cosh[π(λ+ c)/γ ]
(55)

ρb(λ) = 1

2π

∫ ∞
−∞

dξ e−iλξ

×2 sinh1
2ξ(π − 20)+ 2 cosh1

4πξ sinh 1
4ξ(π − 2γ )+ sinh 1

2ξ(π − 2γ )

sinh 1
2πξ + sinh 1

2ξ(π − 2γ )
.

(56)

In the thermodynamic limit, the ground-state energy can be expressed as

Eg = 1

2
N

∫ ∞
−∞

dλ ε0(λ)ρN(λ)+ constant (57)

up to the order of O(N−2), where

ε0(λ) = 2J sinh2 η

cosh 2λ− coshη
= −2J sin2 γ

cosh 2λ− cosγ
. (58)

In the case ofc = 0, the boundary coupling constants are equal to the bulk coupling
constants, and thus the present model degenerates to theXXZ spin chain with the free
boundary. It can be shown that our results coincide with those obtained by other authors
[26, 27] in this limit case. Additionally, the boundary energy can be obtained by using the
relation [13]

Eb = Eg− Ep

whereEp is the well known ground-state energy with periodic boundary condition. The
final result is represented as

Eb =
∫ ∞
−∞

dλ
−J sin2 γ

cosh 2λ− cosγ
[ρi(λ)+ ρb(λ)] + (2Ji − J ) cosγ (59)

whereρi(λ) andρb(λ) are given by (55) and (56).
It should be noted that our above results for the ground-state energy are only correct

when λ has no boundary string solution corresponding to the impurity terms. In our
discussion for realc and imaginaryη (|1| < 1), no boundary string solution appears.
However, for imaginaryc = ic′ (c′ real), the boundary string [12, 13] type solution appears.
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For example, if we takeπ/2> c′ > 0 andγ > 0, in the case ofc′ > γ, it is straightforward
to observe from the Bethe ansatz equation (39) thatλj = c− 1

2η = i(c′− 1
2γ ) is a solution of

the Bethe ansatz equation whenN →∞. From (2), that isJi = J sin2 γ /(sin2 γ − sin2 c′),
it is easy to see thatπ/2 > c′ > γ > 0 means the impurity couplingJi takes the opposite
sign to the bulk couplingJ . To see this from the viewpoint of energy, when 2c′ −γ < π/2,
the energy

ε0(λ) = −2J sin2 γ

cos(2c′ − γ )− cosγ

carried by the imaginary modeλ = ic′ − (i/2)γ is smaller than that carried by the real
mode. Thus it corresponds to the boundary bound state. In other cases, for example
|1| = | coshη| > 1, we can also discuss the boundary state properties but need to be more
careful. Interested readers can see the articles of Skoriket al [12, 13], in which a detailed
discussion about the boundary bound state can be found (see also [14–17]).

In conclusion, the Hamiltonian of theXXZ chain with boundary terms coupled to
impurities is derived and the ground-state properties are discussed in some limited cases.
The thermodynamics of the present model can also be constructed with the standard method
[29, 30] based on the string hypothesis [31]. However, how to construct theK matrix is a
very interesting problem. As we know, theK matrix induces boundary terms. The constant
numberK matrix corresponds to the boundary term which can be interpreted as coupling
with magnetic fields on the edges [32]. In this paper, theK matrix includes a boundary spin
operator and produces the boundary term which is interpreted as the coupling between the
bulk and the boundary spins. In theXXX chain case, the open spin chain with two arbitrary
spin impurities can be constructed. The correspondingK matrix includes an arbitrary spin
operator [23]. It is also interesting to investigate in depth the boundary state properties of
the present model with different parameters; this work is under investigation and will be
presented in the future.
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